Course/Subject: Core Connections 3

Grade Level: 8

Textbook(s) / Instructional Materials Used: Core Connections, Course 3 Second Edition*, Version 5.0
ISBN-13: 978-1-60328-077-8

Month(s): August - September			Unit 1			
Problem Solving						
Big Idea	Standard	Eligible Content	Essential Questions \& Lesson Essential Question	Concepts	Vocabulary	Competencies
Students will understand. . . Points on a graph represent real data (M08.B-.2.1.2). Analyze and interpret bivariate data displayed in multiple representations. (M08.D-S.1.1)	CC.2.2.8.C. 2 Use concepts of functions to model relationships between quantities. CC.2.2.8.C. 1 Define, evaluate, and compare functions. CC.2.2.8.C. 2 Use concepts of functions to model relationships between quantities. CC.2.4.8.B. 1 Analyze and/or interpret bivariate data displayed in		What does it mean to estimate or analyze numerical quantities? What makes a tool and/or strategy appropriate for a given task? How can data be organized and represented to provide insight into the relationship between quantities? How does the type of data influence the choice of display?	Students will know. . . How to extend a tile pattern and how to generalize the geometric description of the pattern. Students will be able to: Interpret points on graphs and continuous graphs. Make predictions from graphed data. Extend tile patterns and represent them	Line of Best Fit Linear association Linear equation Negative correlation Non-Linear association Outlier Positive Correlation Scatterplot Bivariate data Clustering Rational Numbers	Construct, analyze, and interpret bivariate data displayed in scatter plots. Identify and use linear models to describe bivariate measurement data. Use frequencies to analyze patterns of association seen in bivariate data. Distinguish between rational and irrational numbers using their properties. Convert a terminating or repeating decimal

	multiple representations. M08.B-F.2.1.1 Construct a function to model a linear relationship between two quantities. (CC.2.2.8.c.2) M08.B-F.2.1.2 Describe qualitatively the function relationship between two quantities by analyzing a graph. Sketch or determine a graph that exhibits the qualitative features of a function that has been described verbally.			algebraically.	Irrational numbers	into a rational number. Use rational approximations of irrational numbers to compare the size of irrational numbers. Define, interpret, and compare functions displayed algebraically, graphically, numerically in tables, or by verbal descriptions.
Month(s): September			Unit 2			
Simplifying with Variables						
Big Idea	Standard	Eligible Content	Essential Questions \& Lesson Essential Question	Concepts	Vocabulary	Competencies
Students will understand	CC.2.2.8.B. 3 Analyze and solve linear equations and		What are variables, and why are they important?	Students will know . . .	Linear equation Expressions	Analyze, model and solve linear equations.

How to write and simplify algebraic expressions. (M08.B-E.1.1). How to solve for a variable if you know that two expressions are equal (M08.BE.1.1) (CC.2.28.B.3). How to compare two complicated algebraic expressions (M08.B-E.1.1).	pairs of simultaneous linear equations. CC.2.2-8.B. 3 Analyze and solve linear equations and pairs of simultaneous linear equations. M08.B-E.1.1 Represent and use expressions and equations to solve problems involving radicals and integer exponents.		How can algebraic expressions be made simpler? When can it be used? How is the variable solved for in an algebra equation?	What is a term and how to combine like terms. How to find the simplest expression to represent perimeter. The concept of zero and will learn how to represent zero to simplify algebraic expressions. How to record their work in order to show their solution steps. Students will be able to: Represent expressions and equations using algebra tiles, visualizing the terms of algebra. Work with positive and negative algebra terms.		

				Recognize and represent zero in various forms with algebra tiles. Compare algebraic expressions. Record algebraic steps using the language of algebra (translated from algebra tiles). Solve equations for the variable.		
Month(s): October			Unit 3			
Graphs and Equations						
Big Idea	Standard	Eligible Content	Essential Questions \& Lesson Essential Question	Concepts	Vocabulary	Competencies
How to find a rule from a table (M08.B-F.1.1). How to represent a situation using a table, a rule, and a graph (M08.BF.1.1) (CC.2.2.8.C.1).	CC.2.2.8.B. 2 Understand the connections between proportional relationships, lines, and linear equations. CC.2.2.8.B. 3 Analyze and solve linear		How are tables, graphs and rules related? How can a pattern be best represented? How can a solution be checked to be sure it is correct? How many solutions are there for an equation?	Students will know... How to identify the rule for a pattern and state it in words. How to evaluate algebraic expressions to make	Coefficient Function Relation Linear Equation Rate of Change	Analyze and describe linear relationships between two variables, using slope. Make connections between slope, lines and linear equations.

How to graph linear and parabolic rules using an appropriate scale (M08.B-E.3.1) What it means for something to be the solution to an equation, and what it means for an equation to have no solution (M08.B-F.1.1 How to determine the number of solutions to an equation (CC.2.2.8.B.3).	equations and pairs of simultaneous linear equations. M08.B-E.3.1 Represent and use expressions and equations to solve problems involving radicals and integer exponents. M08.B-F.1.1 Define, evaluate, and compare functions displayed algebraically, graphically, or numerically in tables or by verbal descriptions. CC.2.2.8.B. 3 Analyze and solve linear equations and pairs of simultaneous linear equations. CC.2.2.8.C. 1 Define, evaluate, and compare functions.			predictions about a pattern. The difference between discrete and continuous graphs. How to set up appropriate axes for a data set. That a solution is a value that makes an equation true. Students will be able to: Find a rule (equation) from a table of values. Represent a mathematical situation with a table, graph and rule. Determine the number of solutions for an equation. Generate tables and graphs for quadratic	Equations Slope Y-intercept	Interpret solutions to a linear equation and systems of two linear equations. Analyze, model and solve linear equations. Analyze and solve pairs of simultaneous equations. Interpret the rate of change and initial value of a linear function in terms of the situation it models, and in terms of its graph or a table of values.

				equations. Check solutions to algebraic equations. Improve their equation solving skills (without manipulatives).		
Month(s): November			Unit 4			
Multiple Representations						
Big Idea	Standard	Eligible Content	Essential Questions \& Lesson Essential Question	Concepts	Vocabulary	Competencies

	relationships between two variables, using slope. CC.2.2.8.C. 1 Define, evaluate, and compare functions. CC.2.2.8.B. 3 Analyze and solve linear equations and pairs of simultaneous linear equations.			Find the point of intersection of two graphs and relate it to the equations of the lines. Solve systems of equations when both are in $y=m x+b$ form.		
Month(s): December			Unit 5			
Systems of Equations						
Big Idea	Standard	Eligible Content	Essential Questions \& Lesson Essential Question	Concepts	Vocabulary	Competencies
Students will understand. . . How to solve multivariable equations for one of the variables (M08.BE.3.1).	CC.2.2.8.B. 2 Understand the connections between proportional relationships, lines, and linear equations.		How can I change it to $y=m x+b$ form? How can I eliminate fractions in equations? When are they the same? What if systems are not in $y=m x+b$ form?	Students will know... How to change fractional and decimal coefficients and constants to integers.	Simultaneous linear equations	Analyze and describe linear relationships between two variables, using slope. Make connections between slope, lines and linear

How to solve equations with fractional coefficients (M08.B-E.3.1). How to find the point where two lines intersect (CC.2.2.8.B.3). How to use the connections between graphs, tables, rules, and patterns to solve problems (CC.2.2.8.B.3).	CC.2.2.8.B. 3 Analyze and solve linear equations and pairs of simultaneous linear equations. M08.B-E.3.1 Represent and use expressions and equations to solve problems involving radicals and integer exponents. CC.2.2.8.B. 3 Analyze and solve linear equations and pairs of simultaneous linear equations.			The meaning of points of intersection. How to solve systems of equations algebraically when both equations are in $y=m x+b$ form. Students will be able to: Solve twovariable linear equations for one variable. Write rules and find intersections from contexts in word problems. Identify systems that represent the same line or parallel lines (that is, systems that have infinitely many solutions or no solution).		equations. Interpret solutions to a linear equation and systems of two linear equations. Analyze, model and solve linear equations. Analyze and solve pairs of simultaneous equations.
Month(s): January			Unit 6			
Transformations and Similarity						
Big Idea	Standard	Eligible Content	Essential Questions \& Lesson Essential Question	Concepts	Vocabulary	Competencies

				subtraction of integers to movement along a number line. Transform shapes by flipping, turning, and sliding them on a coordinate grid. Describe movement on a graph using coordinates and expressions. Recognize that equivalent fractions can be used to find missing parts of similar figures.		
Month(s): Febru			Unit 7			
Slope and Assoc						
Big Idea	Standard	Eligible Content	Essential Questions \& Lesson Essential Question	Concepts	Vocabulary	Competencies
Students will understand. . How to create scatterplots that show the relationship between two	CC.2.2.8.B. 2 Understand the connections between proportional relationships, lines, and linear equations.		How can I represent the data? Is there a relationship? How can I describe the relationship? How does y change with respect to x ?	Students will know. . . How to draw a line of best fit and use it to make predictions.	Coefficient Function Relation Linear Equation	Analyze and describe linear relationships between two variables, using slope. Make connections

	association can be seen in bivariate categorical data by displaying frequencies and relative frequencies in a two-way table. M08.B-E.2.1 Analyze and describe linear relationships between two variables, using slope. CC.2.2.8.B. 2 Understand the connections between proportional relationships, lines, and linear equations. CC.2.4.8.B. 2 Understand that patterns of association can be seen in bivariate data utilizing frequencies.			and that for a point to lie on the graph; it must make the equation true. Students will be able to: Create scatterplots and identify whether there is a relationship between two sets of data. Identify slopes from graphs, and will recognize the effect of scaling on the steepness of a line. Use slope to describe the average rate when the rate is not constant. Look for and describe associations between two categorical variables I twoway tables.		

Exponents and Functions

Big Idea	Standard	Eligible Content	Essential Questions \& Lesson Essential Question	Concepts	Vocabulary	Competencies
Students will understand... How to simplify expression written with positive exponents. (M08.B-E.1.1) Writing numbers greater than on in scientific notation. (M08.B-E.1.1) The difference between raising a single number to a power and raising a grouped quantity to a power. (CC.2.2.8.B.1) How to determine if a relation is a function by looking at its table or graph. (M08.BF.2.1, CC.2.2.8.C.2)	CC.2.2.8.C. 1 Define, evaluate, and compare functions. CC.2.2.8.B. 1 Apply concepts of radicals and integer exponents to generate equivalent expressions. CC.2.4.8.B. 2 Understand that patterns of association can be seen in bivariate data utilizing frequencies. M08.B-E.1.1 Represent and use expressions and equations to solve problems involving radicals and integer exponents. M08.B-F.2.1 Represent or interpret functional		Is the graph linear? What happens if the exponent is negative? How do I compute numbers written in scientific notation? Can I predict the output? Is it a function?	Students will know... How to compare simple and compound interest. The relationships are functions and which are not, using both a graph and a table. How to identify and describe functions. Students will be able to: Recognize linear and nonlinear situations from tables and graphs. Simplify expressions with positive exponents. Perform calculations	Rational number Irrational number Cube root Perfect cube Perfect Square Square Root Relation Function Scientific Notation Two-way tables	Distinguish between rational and irrational numbers using their properties. Convert a terminating or repeating decimal into a rational number. Use rational approximations of irrational numbers to compare the size of irrational numbers. Apply concepts of integer exponents to generate equivalent expressions. Use and evaluate square roots and cube roots to represent solutions to equations. Define, interpret, and compare functions displayed

Big Idea	Standard	Eligible Content	Essential Questions \& Lesson Essential Question	Concepts	Vocabulary	Competencies
Students will understand . . . The relationship between side lengths of a right triangle as the Pythagorean Theorem and apply that relationship to solve problems. (M08.C-G.2.1) How to apply the Pythagorean Theorem to problems in a variety of twodimensional, everyday contexts. (M08.C-G.2.1) How to find the square root of a number and identify irrational numbers. (M08.AN.1.1, CC.2.1.8.E.1)	CC.2.3.8.A. 3 Understand and apply the Pythagorean Theorem to solve problems. M08.C-G.2.1 Solve problems involving right triangles by applying the Pythagorean theorem. M08.A-N.1.1 Apply concepts of rational and irrational numbers. CC.2.1.8.E. 1 Distinguish between rational and irrational numbers using their properties. CC.2.3.8.A. 3 Understand and apply the Pythagorean Theorem to solve problems.		How can I find missing parts of right triangles? What kind of number is it?	Students will know... How to distinguish rational numbers from irrational numbers Students will be able to: Compare the side lengths of squares to see what combinations of side lengths will make triangles. Find values of square roots by estimation, by using a calculator, and by using a graph. Convert terminating and repeating decimals to fractions.	Pythagorean theorem Square root	Apply the Pythagorean Theorem and its converse to solve mathematical problems in two and three dimensions. Distinguish between rational and irrational numbers using their properties. Convert a terminating or repeating decimal into a rational number. Use rational approximations of irrational numbers to compare the size of irrational numbers.

Surface Area and Volume

Big Idea	Standard	Eligible Content	Essential Questions \& Lesson Essential Question	Concepts	Vocabulary	Competencies
Students will understand . . . How to find the cube root of a number. (M08.A-N.1.1) How to find the surface areas of cylinders and pyramids. (CC.2.3.8.A.1) How to find the volumes of nonrectangular shapes, including cylinders, pyramids, cones and spheres. (M8.C-G.3.1)	CC.2.3.8.A. 1 Apply the concepts of volume of cylinders, cones, and spheres to solve real-world and mathematical problems. M08.A-N.1.1 Apply concepts of rational and irrational numbers. M8.C-G.3.1 Apply volume formulas of cones, cylinders and spheres. CC.2.3.8.A. 1 Apply the concepts of volume of cylinders, cones, and spheres to solve real-world and mathematical problems. CC.2.1.8.E. 1 Distinguish between rational and irrational		How does the volume of a cylinder compare with the volume of a cone? What is the volume of a threedimensional circle (sphere)?	Students will know... How to find the volume of a cube given a side length and to find the sides length when given the volume. How to find the surface area and volume of a cylinder and a rectangular prism. Find surface area and volume of cylinders, pyramids, cones and spheres. Students will be able to: Find the surface area and volume of a cylinder and a rectangular prism, comparing the process and	Cone Cylinder Sphere Cube Root	Apply concepts of volume of cylinders, cones, and spheres to solve real-world and mathematical problems. Use and evaluate square roots and cube roots to represent solutions to equations.

	numbers using their properties.			resulting volumes. CC.2.1.8.E.4 Estimate irrational numbers by comparing them to rational numbers.		Apply their knowledge of volume to create a cone with a maximum volume.
		Find the cube root of a number.				

